A NEW SYNTHETIC METHOD FOR β -TRIMETHYLSILYL- α , β -UNSATURATED CARBONYL COMPOUNDS EMPLOYING 1-METHOXY-3-PHENYLTHIO-3-TRIMETHYLSILYL-1-PROPENE

Tadakatsu Mandai,* Hirofumi Arase, Junzo Otera, and Mikio Kawada Okayama University of Science, Ridai-cho, Okayama 700, Japan

Summary: A new synthetic method for functionally substituted β -trimethylsilyl- α , β -unsaturated carbonyl compounds from 1-methoxy-3-phenylthio-3-trimethylsilyl-1-propene is described.

 β -Trimethylsilyl- α , β -unsaturated carbonyl compounds have proven to be attractive because of both their unique spectral properties and synthetic utilities, though there have appeared only a few general synthetic methods for them.¹

Due to their synthetic utilities, a variety of ambident allylic anions have received much attention.²⁾ Among them, of special interest is an ambident allylic anion stabilized with both sulfur and oxygen because of its possibility of incorporation of electrophiles in a completely regioselective manner.³⁾

We wish to report here that the allylic sulfide $\underline{1}^{4}$ is a new homoenolate diamion equivalent^{3c)} with a trimethylsilyl group which would make a various type of β -trimethylsilyl- α , β -unsaturated carbonyl compounds available. Our synthetic course is shown in Scheme.

Scheme

i) n-BuLi, TMEDA, HMPA, RX, THF ii) NaIO₄, dioxane-water iii) SiO₂-hexane iv) n-BuLi, HMPA, R'X, THF

Alkylation of <u>1</u> results in an exclusive formation of α -adduct <u>2</u> that can be converted into <u>3</u> on treatment with NaIO₄ via a (2,3)-signatropic rearrangement. On the other hand, a novel silica gel-promoted thicallylic rearrangement of <u>2</u> followed by α -alkylation of resultant <u>4</u> enables incorporation of two electrophiles in the desired position in <u>1</u>. Another notable feature of the present method consists in a mild oxidation process, thus functionally substituted products <u>3</u> or <u>6</u> being successfully obtained.

Reaction of the carbanion of $\underline{1}$ (n-BuLi, TMEDA, -20 °C, 0.5 h) with various alkyl halides in the presence of HMPA took place smoothly at -78 °C for 0.5 h and at -40 °C for 1 h, providing $\underline{2}$ in good yields. Sequential desulfurization of $\underline{2}$ thus obtained occurred easily through oxidation with NaIO₄ (1.2 eq) in dioxane-water (5:1) at room temperature for 1 h to afford $\underline{3}$. On the other hand, the thioallylic rearrangement of $\underline{2}$ took place with ease on heating a hexane solution of $\underline{2}$ (1.0 mmol) under reflux for 4 h in the presence of silica gel (flame dried in vacuo, 2.0 g). The newly formed allylic sulfide $\underline{4}$, pure enough without purification, was treated with n-BuLi (1.2 eq) in THF at -40 °C for 1 h followed by HMPA (1.2 eq) and alkyl halides (1.2 eq) at -40 °C for 1 h to afford $\underline{5}$. Crude $\underline{5}$ thus obtained was treated with NaIO₄ in the same manner mentioned above to give $\underline{6}$ in good yields. These results are summarized in Table.

entry	RX	R'X	Yield (%) ^a				
			2	3	<u>4</u>	<u>6</u> b	
1	CH2=CHCH2Br		69 ^C	62			
2	THPO(CH ₂) ₃ Br	$^{n-C}6^{H}13^{Br}$	79	72	89	62	
3	$CH_2 = CH(CH_2)_9I$	THPO(CH ₂) ₃ Br	75	80	88	56	
4	n-C6 ^H 13 ^{Br}	THPO(CH ₂) ₃ Br	80 ^d	75	92	55	
5	n-C ₆ H ₁₃ Br	Γ_{O}^{O} CH(CH ₂) ₂ C1	80 ^d	75	83	48	

Table Conversion of 1 into 3 or 6

a) Isolated yield after column chromatography (silica gel). b) Yield based on 4. c) Isolated yield after distillation (Kugelrohr temp. 100 °C/0.6 mmHg). d) Isolated yield after distillation (Kugelrohr temp. 130 °C/0.6 mmHg).

References

1) J. Otera, T. Mandai, M. Shiba, T. Saito, K. Shimohata, K. Takemori, and Y. Kawasaki, Organometallics, $\underline{2}$, 332 (1983), and references cited therein. 2) For the most recent paper on this subject; Y. Yamamoto, H. Yatagai, Y. Saito, and K. Maruyama, J. Org. Chem., <u>49</u>, 1096 (1984). 3)(a) M. Wada, H. Nakamura, T. Taguchi, and H. Takei, Chem. Lett., 345 (1977); (b) T. Mandai, M. Takeshita, M. Kawada, and J. Otera, Chem. Lett., 1259 (1984); (c) T. Mandai, T. Moriyama, Y. Nakayama, K. Sugino, M. Kawada, and J. Otera, Tetrahedron Lett., <u>25</u>, 5913 (1984). 4) The allylic sulfide <u>1</u> was prepared as follows: Addition of Me₃SiCl (3.0 eq) in one portion to a THF solution of the carbanion of 3methoxy-1-phenylthio-1-propene^{3a)} (LICA, -78 °C, 0.5 h) and HMPA (1.2 eq) followed by stirring at -78 °C for 1 h gave <u>1</u> in 85% yield after distillation (Kugelrohr temp. 85 °C/0.6 mmHg).

(Received in Japan 21 February 1985)